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Valvular heart disease (VHD) is becoming more prevalent in an ageing population, leading to challenges in diagnosis 
and management. This two-part Series offers a comprehensive review of changing concepts in VHD, covering 
diagnosis, intervention timing, novel management strategies, and the current state of research. The first paper 
highlights the remarkable progress made in imaging and transcatheter techniques, effectively addressing the 
treatment paradox wherein populations at the highest risk of VHD often receive the least treatment. These advances 
have attracted the attention of clinicians, researchers, engineers, device manufacturers, and investors, leading to the 
exploration and proposal of treatment approaches grounded in pathophysiology and multidisciplinary strategies for 
VHD management. This Series paper focuses on innovations involving computational, pharmacological, and 
bioengineering approaches that are transforming the diagnosis and management of patients with VHD. Artificial 
intelligence and digital methods are enhancing screening, diagnosis, and planning procedures, and the integration of 
imaging and clinical data is improving the classification of VHD severity. The emergence of artificial intelligence 
techniques, including so-called digital twins—eg, computer-generated replicas of the heart—is aiding the development 
of new strategies for enhanced risk stratification, prognostication, and individualised therapeutic targeting. Various 
new molecular targets and novel pharmacological strategies are being developed, including multiomics—ie, analytical 
methods used to integrate complex biological big data to find novel pathways to halt the progression of VHD. In 
addition, efforts have been undertaken to engineer heart valve tissue and provide a living valve conduit capable of 
growth and biological integration. Overall, these advances emphasise the importance of early detection, personalised 
management, and cutting-edge interventions to optimise outcomes amid the evolving landscape of VHD. Although 
several challenges must be overcome, these breakthroughs represent opportunities to advance patient-centred 
investigations.

Introduction
Progress in the treatment of valvular heart diseases 
(VHDs) has been fostered by the development of invasive 
transcatheter approaches and supported by well designed 
randomised trials primarily focused on devices and 
procedures. The other paper in this Series reviews these 
recent advances.1 However, a 2020 report from the National 
Heart, Lung, and Blood Institute highlighted substantial 
gaps in the delivery of and patient access to personalised 
care in VHD.2 In this Series paper, therefore, we focus on 
priorities that will define the next decade of scientific 
research and clinical practice in VHD. These priorities 
include developing new avenues for screening and 
surveillance through digital health, artificial intelligence, 
and imaging; honing pre-procedure management via 
computational precision phenotyping and medical 
decision making; and probing innovative medical and 
bioengineering approaches for valve therapies.2 Just as the 
COVID-19 pandemic revealed limitations in clinical care 
yet fostered innovation, we anticipate future advances 
stemming from technological and bioengineering 
breakthroughs will refine patient-centred care in VHD.

Digital medicine and artificial intelligence
The emergence of big data from computerised patient 
health records, mobile devices, sensors, wearable 
technologies, imaging techniques, and social networks 
is enabling the use of machine-learning algorithms that 
learn from such data and perform tasks autonomously.3 

Specifically, convolutional neural network (CNN) 
models—a deep learning method for segmenting an 
image in a grid-based fashion to identify patterns for 
overall image comprehension—have enabled high 
algorithmic precision and accuracy.4

Artificial intelligence-powered digital tools for 
screening
Physical examination and cardiac auscultation are the 
cornerstones of clinical diagnosis and screening of VHD; 
however, compared with transthoracic echocardiography, 
cardiac auscultation alone achieves a sensitivity of only 
40–70% for the detection of VHD.5 Machine learning can 
improve diagnostic yield by extracting features (eg, 
phonocardiography or electrocardiogram [ECG] signals 
from an electronic stethoscope) and learning to assign 
labels to clinical data. This learning process can be 
supervised or unsupervised. Briefly, supervised learning 
assigns given labels to data with information on the 
outcome or ground truth to develop a prediction model. 
By contrast, unsupervised learning seeks labels that 
could be assigned to data.

Artificial intelligence algorithms can extract acoustic  
features from audible heart sounds and murmurs or 
infrasound data (ie, sound waves with a frequency lower 
than the lower limit of human audibility—generally 
20 Hz) using unfiltered phonocardiography data or 
digitally processed acoustic signals.6,7 The direct 
incorporation of these algorithms into electronic 
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stethoscopes has shown promising results in prospective 
clinical studies8 (appendix p 1). Machine learning has 
also been applied to ECG for detecting VHD, specifically 
left-sided valvular lesions (aortic stenosis and mitral 
regurgitation), with acceptable accuracy9–11 (appendix p 1). 
Machine learning-augmented ECG has shown excellent 
discrimination for predicting moderate-to-severe or 
severe VHD, with the area under the receiver operating 
characteristic (AUROC) curve ranging from 0·80 to 0·91 
(appendix p 1). Artificial intelligence has also been 
applied to assess cardiomechanical signals (ie, cardiac 
vibrations propagating to the chest wall) obtained using 
microelectromechanical system accelerometers and 
gyroscopes to classify VHDs.12

Artificial intelligence-augmented ECG monitors and 
other wearables appear promising as level 1 (community-
based) screening tools for identifying patients with 
clinically significant VHD in the general population 
(unselected population; figure 1). However, with low 
overall prevalence of VHD, the positive predictive value 
of these models might be lower for individual target 
VHDs.10 The use of clinical features in addition to ECG 
data might overcome this limitation.11 For example, the 
rECHOmmend study aimed to improve the accuracy of 

CNN models by including patients with moderate-to-
severe valvular diseases who also had structural changes, 
such as reduced ejection fraction (<50%) or ventricular 
septal thickness greater than 15 mm.11 The CNN model 
was trained to identify the presence or absence of any 
valve lesion using ECG tracings and input data, including 
demographic and laboratory data. Although the model 
achieved the best performance when all inputs were 
considered, the AUROC remained high, at 0·91, when 
only age, sex, and ECG tracings were used. Similarly, in a 
multisite pooled analysis involving 77 163 patients, a 
CNN model using ECG and demographic features 
identified moderate-to-severe VHD with receiver 
operating characteristic (ROC) curve values ranging 
from 0·77 to 0·88 for specific valve lesions and 0·84 for 
overall lesion detection.13 However, for most of these 
studies, training and validation have been restricted to 
retrospective datasets from hospital-based settings. 
Moreover, models have underperformed during external 
validation.13 Future studies must address the challenges 
associated with prospective implementation, use, 
generalisability, and overall impact on early detection, 
diagnostic throughput, and clinical outcomes in general 
population settings.

See Online for appendix

Figure 1: Digital innovations in care delivery for valvular heart disease
The schematic conceptualises machine learning techniques using ECG, wearable devices, and physiological sensor-based data for screening, individualised care 
coordination, and follow-up strategies. Screening in communities can be triggered with the use of wearables, devices, and remote patient monitoring systems. 
The appropriate triggers can lead to specialised consultations, with additional screening (using cardiac POCUS imaging techniques) and optimisation of downstream 
testing, evaluation, and timing of interventions. ECG=electrocardiogram. VHD=valvular heart disease. POCUS=point-of-care ultrasound. TTE=transthoracic 
echocardiogram. TEE=transesophageal echocardiogram..
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Artificial intelligence-driven monitoring and access to 
care
Remote patient monitoring by use of wearable devices, 
such as smartwatches or smartphone-based mobile 
health apps and telehealth applications, is a rapidly 
growing field.14 Sensors can be deployed in garments or 
worn at the chest and wrist areas, and artificial 
intelligence techniques can be used to help monitor 
physical activity and related physiological parameters 
such as heart rate, respiration, oxygen saturation, blood 
pressure, and weight.15 Specifically, for patients with 
chronic VHD, such devices can provide efficient 
individual-level monitoring of physiological changes and 
symptoms over the disease course (figure 1).

Physiological parameters measured via wearable 
devices can provide a quantitative and objective 
assessment of functional capacity, potentially equivalent 
to the predictive value of 6-min walk tests and other frailty 
assessment methods.16,17 Several remote-monitoring 
devices have received regulatory approval for artificial 
intelligence-based algorithms that continuously monitor, 
for example, symptoms, physiological signals, and ECG.18 

Longitudinal use of such remote patient monitoring in 
VHD could help ascertain clinical and haemodynamic 
stability or early deterioration when physical activity 
diminishes, specifically in patients with severe 
asymptomatic valve disease. Conversely, for patients 
already on waiting lists for surgical or transcatheter 
procedures, remote monitoring can identify subsets of 
patients at risk of rapidly worsening symptoms or 
outcomes so that therapies can be expedited.19 For 
example, the Royal Brompton and Harefield NHS Clinical 
Group implemented digital remote patient monitoring to 
identify and prioritise patients needing surgery for 
valvular disease or requiring coronary artery bypass graft, 
myomectomy, or ascending aortic surgery. Of 525 patients 
who enrolled and were monitored through the app, 
51 (9·71%) were flagged as being at risk and were 
escalated, resulting in surgery dates being brought 
forward for 45 (88·2%) patients.19 Wearable devices can 
also facilitate remote health care for patients discharged 
to home after undergoing transcatheter aortic valve 
replacement (TAVR) and can provide access to cardiac 
rehabilitation and monitor patient-reported outcomes.20

Artificial intelligence-augmented cardiac imaging
Over the past few years, there have been three key 
advances in cardiac ultrasound, aided by the emergence of  
miniaturisation, three-dimensional (3D) and four-
dimensional (4D) imaging, artificial intelligence use for 
image acquisition, automated quantification measure
ments, and decision support for automated interpretation. 
The first key advance is point-of-care ultrasound (POCUS), 
which has performed better than traditional auscultation 
methods of evaluating VHD, even when conducted by 
medical professionals who are not cardiologists (eg, 
nurses).21 For patients referred with suspected VHD, 

cardiac POCUS is, thus, well suited as a level 2 (outpatient) 
screening tool for early detection (figure 1). In a 
randomised clinical trial that assessed patients with 
known structural heart disease, adding POCUS to the 
clinical evaluation resulted in earlier referral for valvular 
intervention and decreased the risk of admission to 
hospital and mortality.22 Recently developed artificial 
intelligence tools can guide novice users in the acquisition 
of high-quality images using POCUS and diagnose VHDs 
from limited echocardiography views.23,24 For example, 
using such tools to train non-expert health-care workers 
(eg, nurses, medical students, and clinical officers) in 
underserved areas might be helpful in ultrasound 
screening for rheumatic heart disease in endemic areas.25

Another key advance in cardiac ultrasound is the 
application of artificial intelligence to cart-based 
equipment and picture archiving and communication 
systems. Deep learning techniques can automate the 
segmentation of cardiac chambers and leaflet 
segmentation in B-mode images, estimation of Doppler 
tracing, calculation of cardiac chamber volumes and 
function (ejection fraction and global longitudinal 
strain), and evaluation of valve morphology and motion 
in two-dimensional images.26,27 Besides improving 
accuracy in the assessment of valvular lesion severity, 
machine-learning models might help the development of 
personalised recommendations for subsequent 
echocardiographic examinations as part of follow-up 
screening, specifically for patients with non-severe 
lesions.28 Regarding 3D and 4D imaging, several 
commercial software programmes have been developed 
for the automated quantitative analysis of aortic and 
mitral valve apparatus.29 However, further software 
development is needed for more complex and 
comprehensive assessments—eg, to differentiate 
mechanisms of regurgitant lesions, such as leaflet 
prolapse, perforation, tethering, and chordal rupture.

Artificial intelligence can also assist in the interpretation 
of cardiac CT and MRI findings. For example, artificial 
intelligence techniques can aid image acquisition, reduce  
image reconstruction times, and facilitate automated slice 
positioning—improving the quality of images and 
accuracy of cardiac chamber segmentation—as well as 
enhance the automatic localisation of landmarks.26 
Artificial intelligence tools for CT are increasingly used in 
preoperative planning, with prospective studies showing 
the value of automated artificial intelligence tools in 
prosthesis sizing and procedural planning, specifically for 
TAVR.30 For cardiac MRI, artificial intelligence techniques 
can potentially improve automated tissue characterisation 
for the quantification of myocardial replacement fibrosis 
(late gadolinium enhancement) and interstitial fibrosis 
(extracellular volume by T1 mapping),  the key prognostic 
features in severe VHD.31,32 Moreover, combining methods 
for extracting pixel-level information that is not visible to 
the naked eye (radiomics) with artificial intelligence 
techniques might enable the detection of myocardial 
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changes without requiring contrast agents for image 
enhancement.33

Machine learning for precision phenotyping of VHD
Unsupervised machine learning offers various methods 
for partitioning patients into comparable subgroups or 
phenotypic presentations. For instance, whereas aortic 
stenosis severity has previously been evaluated on the 
basis of valve-related factors, unsupervised machine 
learning enables the integration of structural, 
functional, and haemodynamic data to segregate 
patients into unique groups, also referred to as clusters, 
to highlight differences in cardiac remodelling patterns 
and prognoses (figure 2).34 Another technique, network 
analysis, depicts patient groups as nodes, with 
connections between the nodes (appearing as lines) 
representing the strength of similarities between 
multiple clinical features. These networks can depict 
disease progression and severity patterns over time. For 
example, network analysis suggested that a distinct 
subgroup of patients with aortic stenosis might have 
had systolic dysfunction before developing severe 
aortic stenosis.35 Although this finding is consistent 
with clinical observations,36 such pathophysiological 
information is often overlooked in the traditional 
understanding of aortic stenosis, whereby left 
ventricular dysfunction is conventionally suggested to 
occur only after the development of severe aortic 
stenosis.

Unsupervised machine learning also provides a 
superior characterisation of the risk continuum across 
different aortic stenosis presentations.35,37,38 Such 
characterisation might aid in identifying patients with 
aortic stenosis who are at risk of developing clinical 
events despite non-severe or discordant echocardiographic 
findings and help reclassify patients more consistently 

than the current guideline-recommended aortic stenosis 
severity groups.37 Another advantage of unsupervised 
machine learning is that it facilitates the addition of  
clinical data to echocardiographic information, aiding in 
comprehensive patient comorbidity assessment—an 
element often missed when dealing with echocardiography 
data alone.38 Beyond aortic stenosis, unsupervised 
machine learning has also been used to reclassify and 
identify distinct subgroups of patients with mitral and 
tricuspid regurgitation.39–42 Although these novel 
phenotyping strategies have not been extensively 
validated, such insights could lead to new grading 
systems for VHD severity and progression, to improve 
the timing of intervention.

Artificial intelligence for risk stratification and therapy 
planning
Machine learning has recently been shown to complement 
or outperform existing risk models (eg, EuroSCORE II, 
Society of Thoracic Surgery models, and the National 
Inpatient Sample TAVR score model) in predicting 
mortality, prolonged ventilation, and renal failure following 
valve surgery or interventions.43–45 Improved risk 
stratification will allow health-care providers to more 
accurately assess a patient’s risk of morbidity and mortality 
when undergoing valve replacement.44,45

Surgical strategy (repair or replacement) mainly  
depends on the cardiac surgeon’s expert assessment. 
Machine learning can combine the valve characteristics 
(assessed during preoperative valve analysis and obtained 
from preoperative and perioperative echocardiographic 
data) of large numbers of patients and correlate these 
characteristics with outcomes.46 Artificial intelligence can 
also guide the surgeon or cardiologist in selecting optimal 
procedural scenarios. For example, automated measure
ment of the aortic and mitral annulus perimeters, allowing 

Figure 2: Use of machine-learning approaches to refine the taxonomy of valvular heart diseases
Unlike the conventional description of heart valve lesion severity (eg, mild, moderate, or severe), which uses a small number of imaging features, unsupervised 
machine-learning approaches integrate diverse data to develop meaningful subgroups (clusters) and biological networks (topological maps) associating disease 
severity with distinct outcomes.  After the unsupervised learning is used to develop phenogroup labels, a supervised machine-learning classifier can assign a new 
patient to the phenogroup class label, which might be particularly useful when patients have conflicting clinical data or imaging measurements. 
ECG=electrocardiogram. CNN=convolutional neural network. AVR=aortic valve replacement.
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the selection of transcatheter aortic or mitral valve 
implantation, is feasible within seconds and with error 
similar to or smaller than that arising from interoperator 
variability.47 Similarly, artificial intelligence can rapidly 
simulate the outcomes of MitraClip (Abbott, Abbott Park, 
IL, USA) interventions for different scenarios (eg, 
differing locations and numbers of MitraClips).48 Using 
advanced imaging techniques (eg, real-time intraoperative 
video kinematic evaluation of the right ventricle), artificial 
intelligence can also predict right ventricle function 
following chest closure after pulmonary valve replacement 
in patients with tetralogy of Fallot, thus providing a 
decision-making tool to support the medical team during 
open-chest surgery.49

In health care, a digital twin is a virtual representation 
of an individual generated using comprehensive datasets 
relating to that individual. The digital twin has become a 
powerful concept since the emergence of technology to 
collect patient data (eg, vital signs from smartwatches) 
during hospital visits and everyday life. Appropriate 
statistical models are applied to plan treatment and 
follow disease progression in an individualised manner.50 

Computational planning using digital twins is a step 
towards individualising decisions regarding when to 
offer surgery or intervention, as treatments are often 
costly or invasive (figure 3; panel 1).

Digital therapeutics provide information and 
communications for technology-based interventions to 
manage disease. An example is the application of digital 

therapeutics to improve patient adherence to 
hypertension control.53 In VHD, digital therapeutics-
based exercise intervention has shown the potential to 
optimise outcomes.54 Using digital therapeutics and   
digital twins could reduce the unnecessary expenditure 
of health resources, facilitate the monitoring of patients 
with limited health-care access, and maximise the 
outcomes of costly or invasive procedures.

Limitations and barriers to the adoption of 
artificial intelligence techniques
Inherent limitations and barriers to implementing 
digital and artificial intelligence techniques are 
presented in panel 2.56–58 The advent of large language 
models such as generative pre-trained transformer 
presents a new opportunity for a democratised artificial 
intelligence landscape. With billions of parameters, 
these models enable the handling of complex tasks and 
excel at transfer learning by fine-tuning their abilities 
through exposure to diverse data sources such as images 
and videos. The algorithmic fidelity, ethical implications, 
and privacy concerns surrounding these architectures 
have been topics of debate.59 Nevertheless, the judicious 
integration of image-based models with the electronic 
medical records and outcomes of existing patients could 
enhance procedure planning and interventional strategy 
selection by improving creative discussion in heart team 
meetings and facilitating clear communication with 
patients.

Figure 3: Suggested pipeline for developing, planning, and predicting the efficacy of therapy for valvular heart disease before real-world implementation
A digital twin of an individual can be constructed using patient-centred multimodal data and used to simulate treatment outcomes, making it possible to predict the 
efficacy of therapy (blue arrow). Simulation results from the digital twin make it possible to implement the most effective treatment (red arrow), thereby maximising 
cost-effectiveness and efficacy. AI=artificial intelligence.
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Therapeutic innovations for VHD
To date, no medical treatment has been shown to prevent 
or reverse VHD. Furthermore, as VHD is a multifactorial 
disease involving genetic factors, molecular immune 
pathways, haemodynamic factors, and shear stress, its 
pathophysiology is complex. Therefore, the continued 
search for pathways to prevent VHD progression 
remains a hot topic due to the important clinical 
implications of this condition. The accelerating blending 
of artificial intelligence, digital health, and imaging 
could aid early VHD detection and timely therapeutic 
intervention.

Therapeutic pathways for mitral valve disease
Primary mitral regurgitation due to myxomatous 
degeneration results from the recruitment of monocyte-
derived macrophages, which induce extracellular matrix 
remodelling, causing valve thickening and prolapse.60 

Various molecular pathways are implicated at a cellular 
level, but further investigation is needed to identify 
potential pharmacological targets.61 Understanding the 
distinction between syndromic factors (eg, resulting from 
genetic syndromes) and non-syndromic factors 
contributing to mitral valve prolapse is essential. For 
instance, in conditions such as Marfan syndrome, 
TGF-β signaling could be key, and blockading 

angiotensin 2 receptors might limit aortic dilation and 
the associated progression of mitral valve prolapse.61

For secondary mitral regurgitation, targets within the 
extracellular matrix include SERT activity in interstitial 
cells and serotonin receptor signalling, which accelerate   
mitral valve remodelling.62 Serotonin has been implicated 
in the development of secondary mitral regurgitation in 
patients with myocardial infarction.63 Application of 
cyproheptadine, a serotonin antagonist, in a sheep model 
of inferior myocardial infarction reduced maladaptive 
remodelling of the mitral valve, with lower severity of 
mitral regurgitation in treated animals than in controls.64 
Although this observation has not been fully validated in 
clinical studies, elevated concentrations of circulating 
serotonin have been reported in patients following 
myocardial infarction,65 suggesting a target for future 
research.

Therapeutic pathways for calcific aortic valve
Calcific aortic stenosis is an active process initiated by 
inflammatory damage to valvular endothelial cells 
(VECs), leading to fibrosis and calcification. Aortic valve 
leaflets comprise three layers: the fibrosa, which is 
arranged towards the aortic wall; the elastin-rich 
ventricularis, which is oriented towards the left ventricle; 
and the spongiosa, the middle layer of the leaflet. Valvular 

Panel 1: Digital twins in valvular heart disease: opportunities and challenges 

Digital twins offer a promising solution for clinicians and 
patients in precision cardiovascular medicine, especially when 
dealing with complex valvular conditions and individual 
treatment strategies. Digital twins are computational models 
that serve as avatars of patients and can aid clinicians in 
optimising treatment options. Digital twins can be 
constructed by leveraging various imaging technologies, 
providing insights into valve structure, haemodynamics, and 
the systemic milieu. Digital twins can facilitate virtual 
procedures, such as transcatheter aortic valve replacement in 
severe aortic stenosis, enabling clinicians to establish the 
optimal placement and sizing of valves and identify potential 
post-procedure complications, including paravalvular 
regurgitation.51 Cloud-based simulation software creates 
digital copies of the heart and its valves to optimise procedural 
outcomes.

Digital twins can be used to evaluate borderline cases, such as 
asymptomatic older patients with severe mitral regurgitation 
who might or might not benefit from the MitraClip procedure. 
Using more expansive models of the heart, such as those 
developed by The Living Heart Project, digital twins can 
simulate and forecast potential cardiac failure, enabling early 
valve repair and personalised treatment strategies.52 This 
approach ensures that only patients who require intervention 
undergo procedures, avoiding unnecessary risks for those who 
tolerate their condition well.

Although digital twins show great potential, the current models 
have limitations. These models primarily focus on the structural 
aspects of the heart and some haemodynamic factors while 
neglecting the systemic milieu, which can substantially 
influence valve function. Additionally, the slow evolution of 
most valvular heart diseases (VHDs) requires serial follow-ups 
for accurate twin creation, which might not be feasible in the 
near future. The reliability of digital twins heavily depends on 
the data used to create them, making them potentially biased, 
particularly in under-represented populations.

Despite these challenges, digital twins offer considerable room 
for improvement and development. Digital twins can be 
valuable tools in clinical practice, especially as technology 
advances, allowing for more comprehensive and accurate 
models of VHD. The complexity of cardiovascular structures and 
patients’ unique characteristics highlight the need for 
personalised treatment strategies, with digital twins potentially  
playing a vital role in guiding clinicians’ decisions.

Although it remains uncertain whether digital twins provide a 
clear advantage over conventional models in predicting 
outcomes for diverse populations, ongoing developments and 
research in this area are promising. As technology evolves and 
more data become available, digital twins could revolutionise 
precision medicine and improve individualised cardiovascular 
care for patients in the coming years.
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interstitial cells, components of all three layers, undergo 
fibrogenic and osteogenic transformation after initial 
inflammatory damage to VECs. In addition, injury 
promotes the accumulation of lipids, red blood cells, and 
immune cells, leading to further fibrosis and calcification 
of the valve leaflets. Hyperlipidaemia and other 
traditional risk factors for coronary artery disease and 
atherosclerosis are also associated with calcific aortic 
stenosis. For example, lipoprotein(a) has been associated 
with aortic valve calcification,66 and a 2020 analysis of the 
FOURIER trial showed that treatment with a PCSK9 
inhibitor, evolocumab, slowed the progression of aortic 

stenosis.67 To elucidate the role of lipid lowering in 
reducing the severity of aortic stenosis, studies are 
investigating the ability of statins (specifically, 
atorvastatin; NCT02679261), niacin (NCT02109614), 
pelacarsen (NCT05646381),68 and PCSK9 inhibitor 
(NCT03051360) to reduce lipoprotein(a).

Nitric oxide in VECs plays an important role in 
maintaining the homoeostasis of the valve leaflets. Valve 
injury depletes nitric oxide, inducing valve fibrosis and 
calcification by affecting NOTCH1 signalling, which is 
essential for proper aortic valve development.69 In 
addition, nitric oxide inhibits RUNX2-dependent 

Panel 2: Barriers to digital and artificial intelligence techniques in valvular heart disease care

Wearable tools and digital health
Wearable technology studies have shown promising results in 
valvular heart disease (VHD) care but have limitations due to 
the under-representation of particular populations, study 
design heterogeneity, and the need for long-term, meaningful 
clinical results. The COVID-19 pandemic highlighted disparities 
in telemedicine access, particularly for older individuals, Asian 
people, Black people, Latinx individuals, non-English speakers, 
women, and individuals on low incomes. Reproducibility is 
hindered by varied interventions, differing devices, and 
evolving technology. Additionally, data quality from wearables 
faces challenges from technical issues, user-related factors, and 
the absence of standardisation. Moreover, the digital divide—
the growing gap between groups due to unequal access to 
digital technologies—disproportionately affects older people, 
disabled people, people with low socioeconomic status, and 
people living in rural communities. To address these disparities, 
efforts are needed to improve broadband internet access, the 
affordability of digital tools, language accessibility, and form 
accessibility. Tailoring digital health solutions to patient context 
and communication preferences, promoting digital literacy, 
and recognising the digital divide as a social determinant of 
health are essential steps toward achieving health equity. 
Future clinical studies should focus on under-represented 
populations and assess the accuracy and validity of wearable 
devices through structured frameworks to enhance the 
equitability of digital health.

Artificial intelligence techniques
Machine learning algorithms are inherently susceptible to 
biases, and the scarcity of high-quality data that include specific 
patient groups, such as women and people from minoritised 
ethnic groups, presents a considerable obstacle to patient-
centred machine learning research and decision making. 
Additionally, the black box nature of artificial intelligence 
algorithms raises concerns about transparency in the decision-
making process. Although explainable artificial intelligence 
methods can provide reasoning for artificial intelligence 
predictions, these explanations might only focus on specific 
aspects of the model’s decision. In complex cases, the 
explanations might not be comprehensive enough to fully 

capture the reasoning behind a diagnosis or classification. For 
example, imagers might need to rely on their own expertise to 
validate or interpret artificial intelligence-generated 
explanations, adding an additional layer of complexity. 
Moreover, the successful implementation of artificial 
intelligence requires skilled professionals who can develop, 
implement, and maintain artificial intelligence solutions, but 
health-care organisations might face challenges in recruiting 
and training staff with the necessary expertise. Finally, the 
integration of artificial intelligence raises ethical considerations 
about the potential impact of this technology on patient 
autonomy and the question of who takes responsibility for 
artificial intelligence-driven decisions. Ensuring that artificial 
intelligence adheres to ethical guidelines and regulatory 
requirements is crucial for building trust in artificial 
intelligence-driven solutions.

Specific strategies for VHD
The development of robust artificial intelligence tools will 
require the prospective collection of high-quality data for 
various heart valve patient groups, including detailed valve-
specific data (eg, valve characteristics during surgical valve 
analysis and imaging data) and complete follow-up. Validations 
need to be performed in diverse settings, with the inclusion of 
mortality, morbidity, and valve-specific outcomes (eg, 
reoperation, recurrent regurgitation, and structural valve 
deterioration). Furthermore, methods for ethical data 
collection, data governance, patient permission, and data 
sharing between institutions with additional privacy and data 
safety issues are important considerations.55 Currently, the EU 
medical device regulation mandates medical device companies 
to assess the clinical outcomes of their devices. For example, the 
Heart Valve Society AVIATOR registry, a network that includes 
patients with regurgitant aortic valves or root aneurysms, 
allows clinicians to collaborate with medical device companies 
to collect high-quality data. If data inclusion in large 
prospective registries (that include patient-reported outcome 
measures) becomes a prerequisite for reimbursement, there 
could be meaningful opportunities to improve real-time clinical 
decision making for patients with VHD.

For more on the Heart Valve 
Society AVIATOR registry 
https://heartvalvesociety.org/
AVIATOR/
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calcification,70 partly due to NOTCH1 activation. The 
effect of modifying nitric oxide-dependent pathways in 
aortic stenosis is being investigated in two clinical trials 
(appendix p 2; NCT02049203 and NCT02481258). Nitric 
oxide depletion activates DPP-4, which induces the 
osteogenic transformation of the aortic valve by limiting 
autocrine IGF-1 signalling.71 In addition, there is a sex-
related difference in the degree of fibrosis versus 
calcification of the aortic valve; specifically, in women, 
there is upregulation of an inhibitor of calcification, 
which favours fibrosis rather than calcification during the 
development of aortic stenosis.72 In animal and 
retrospective human studies, inhibition of DPP-4 reduced 
the progression of valve calcification and fibrosis, and 
suppressed haemodynamic progression in aortic 
stenosis.73,74 Some DPP-4 inhibitors were found to be 
associated with slower progression of aortic stenosis in 
patients with diabetes.74 Of these inhibitors, evogliptin 
penetrated the valve tissues most effectively. Therefore, a 
phase 2/3 multicentre double-randomised clinical trial 
(NCT0513177; appendix p 2) is testing whether evogliptin 
can reduce calcification of the aortic valves and the 
haemodynamic progression of aortic stenosis.

Another possible mechanism of calcific aortic stenosis 
is related to bone metabolism. RANKL is involved in the 
osteogenic transformation of valvular interstitial cells 
to osteoblasts and reduced secretion of proinflammatory 
cytokines.75 In addition, altered calcium–phosphate 
metabolism seen in patients with chronic kidney disease 
has been associated with the development of calcific 
aortic stenosis. Some observational studies have 
suggested the role of bisphosphonates in decreasing 
osteoclastic activity and delaying calcific aortic stenosis.76,77 
Similarly, warfarin has been shown to promote vascular 
and valvular calcification by inactivating vitamin 
K-dependent proteins.78 One such vitamin K-dependent 
protein is matrix Gla, which inhibits the production of  
hydroxyapatite crystals and suppresses the expression of 
other osteogenesis-promoting proteins, such as TGF-β 
and BMP-2. However, despite promising observational 
data, prospective randomised studies addressing bone 
metabolism and matrix modulation have yielded 
disappointing results79,80 (appendix p 2), suggesting the 
need to look beyond these pathways.

Application of multiomics to find new molecular targets 
in VHD 
Notwithstanding guidelines stressing the importance of 
disease progression in guiding treatment,81 echocardio
graphy, the pillar of diagnosis for VHD, does not provide 
insights into whether or how the disease might evolve or 
suggest new therapeutic targets. The expansion of other 
domains of multiomics provides insights into the 
pathogenesis and progression of VHD, suggesting a 
possible precision approach (panel 3). For example, 
integrated spatiotemporal transcriptomic and 
proteomics analysis showed layer-specific pro-calcific, 

pro-inflammatory pathways governing valve degeneration 
in aortic stenosis.84

Several molecular targets, some of which are based on 
multiomics research, are under consideration as targets 
for novel pharmacological therapies for calcific aortic 
stenosis; such targets include NOX2, E-NPP 1, P2Y2, 
CDH11, PPARγ, IL-6, and FABP4. Insights into 
therapeutic targets for VHD might come from precision 
phenotyping and the investigation of newer biological 
pathways via genomics, the typical starting point of 
multiomic approaches.89 For example, a genome-wide 
association study identified sortilin—a type 1 membrane 
glycoprotein encoded by the SORT1 locus—as a crucial 
mediator of aortic stenosis.90 Similarly, a multiancestry 
genome-wide association study identified six novel 
genomic regions from the genetic profiles of individuals 
with atherosclerosis.91 With the genotyping of thousands 
or millions of individuals, the results of clinical trials 
might be predictable using genotypes as proxies for 
independent variables in randomised clinical trials 
(Mendelian randomisation). One example of this 
approach is the potential utility of lipoprotein(a)  as a 
therapeutic target in aortic stenosis.92 Increasing our 
understanding of (personalised) VHD progression using 
multiomics approaches might be instrumental in the 
development of new pharmacotherapeutic targets 
(panel 3).

Surgical and interventional innovations
Heart valve replacement
Currently used heart valve replacements are either 
mechanical or biological prostheses. With the rise in 
TAVR, valve replacement in young and middle-aged 
patients comes with substantial risks of valve 
degeneration, reoperation, and mortality.93 Over the past 
few years, decellularisation methods and anti-calcification 
treatments have changed, but they have not led to real 
improvement in outcomes. Both types of prostheses are 
non-viable substitutes that inherently lack the natural 
capacity of native heart valves to grow and adapt to 
changes in the haemodynamic environment throughout 
life.94 New, more flexible, mechanical valves are in various 
stages of preclinical and clinical testing.95 These flexible 
polymeric heart valves have two essential features. First, 
they are less thrombogenic and could function without 
(or with less) anticoagulation. Second, these valves can 
be used for transcatheter applications because of their 
flexibility. However, results from clinical trials are still 
awaited regarding their applicability in routine clinical 
practice.

For valvular prostheses, the absence of growth and 
remodelling potential is even more problematic when 
replacing valves in paediatric patients with congenital 
cardiac defects (eg, tetralogy of Fallot), who inevitably 
need reoperations due to somatic growth. In young 
adults, the benefit of having a viable replacement valve is 
evident from the improved long-term outcomes reported 
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when using a pulmonary autograft to replace a diseased 
aortic valve (Ross procedure), rather than a biological or 
mechanical prosthesis.96 Furthermore, new surgical 
techniques to wrap or reinforce the autograft might 
circumvent autograft dilatation. The Ross procedure—
the only therapy for patients with aortic stenosis that 
results in a life expectancy comparable to that of the 
normal population—might be incorporated in future 
guidelines as an option for aortic valve replacement in 
adults younger than 60 years.97

In situ heart valve tissue engineering
Inspired by the natural capacity of human heart valves to 
grow and remodel, heart valve tissue engineering (HVTE) 
has been pursued to obtain viable valve prostheses without 
the need for donor tissue. Although technically feasible, 
engineering an autologous valve in vitro has proven 
complex. This process is subject to several translational 
challenges, including the long culture periods required for 

cell expansion and tissue formation and the associated 
logistical and financial costs. Nevertheless, considering the 
large patient population needing heart valve replacements 
because of rheumatic heart disease in developing 
countries, a consensus document was published stating 
that any new technology should be affordable and broadly 
applicable.98 Therefore, attention has shifted to the more 
direct in situ HVTE approach (figure 4), rather than 
implantation of autologous cellularised valves. The in situ 
approach uses resorbable valvular prostheses that 
temporarily restore valve function while gradually 
becoming cellularised and replaced by endogenous new 
valve tissue directly in the valve’s functional site.105 Such 
prostheses are available off the shelf and are projected to 
be cost-effective for paediatric and adult patients, as 
predicted using early health technology assessment.106,107

One strategy to obtain viable valve prostheses is to use 
decellularised tissue valves, which can be stored until 
needed. Upon implantation, the tissue becomes 

Panel 3: Multiomics in valvular heart disease: projections and pitfalls

To date, haemodynamic and structural research have been the 
main ways of understanding valvular heart disease (VHD). 
Recent large-scale omics research has provided biochemical and 
molecular insights into VHD, mainly focusing on aortic stenosis. 
Proteomics and metabolomics have shown promising potential 
for stratifying risk and identifying therapeutic targets for VHD. 
For example, in patients with aortic stenosis who have diabetes, 
plasma proteomics revealed a pro-inflammatory and pro-
fibrotic milieu that might worsen their condition.82 
Metabolomics showed that higher lysophosphatidic acid 
concentrations in stenotic valves correlated with faster 
haemodynamic progression.83 Such findings can help predict 
which individuals are at higher risk of future adverse events. 
Moreover, omics studies have identified novel molecular targets 
for aortic stenosis. Transcriptomics revealed increased DPP4 
transcription in stenotic aortic valves, suggesting the potential 
of this molecule as a therapeutic target.71 Inhibition of DPP4 has 
shown promise in treating aortic stenosis.74

The use of multiple omics domains, known as multiomics, 
enables a comprehensive understanding of valvular disease, 
revealing the distinct pathways driving aortic stenosis and 
carotid atherosclerosis. Recent research using proteomics and 
vesiculomics (extracellular vesicle proteomics) to analyse 
biospecimens of human carotid arteries and stenotic aortic 
valves showed that although atherosclerosis and aortic stenosis 
share common pathophysiology, distinct pathways drive each 
condition (eg, Notch signalling in carotid atherosclerosis and 
Wnt signalling in aortic stenosis).84 These findings suggest that 
although some drugs might work on both atherosclerosis and 
aortic stenosis, others might only be effective in one of these 
disease processes. Vesiculomics also provides a basis for 
developing novel diagnostic strategies, as extracellular vesicles 
are now the focus of disease monitoring and therapeutic 
material delivery.

Genomics, the typical starting point of multiomics studies, has 
also provided new tools for the development of therapeutic 
targets of VHD, such as the use of genome-wide association 
studies to predict the results of randomised clinical trials. Human 
genotypes are inherently randomised as individuals can receive 
one of two alleles for each gene from their parents. These 
genotypes can be used as proxies for independent variables in 
randomised clinical trials, a process named Mendelian 
randomisation, which can then be used to assess causality. 
For example, if the effect of statins on aortic stenosis is in 
question, we could take advantage of genotypes associated with 
LDL cholesterol, such as LDLR or PCSK9 variants. In addition, 
although targeting LDL was not proven to be effective in 
randomised trials,85 Mendelian randomisation showed that LDL 
remained an adequate therapeutic target,86 raising questions 
about the design of former trials to investigate the effects of LDL 
lowering and suggesting that the use of drugs such as PCSK9 
inhibitors might remain a viable therapeutic strategy.

Despite the novel insights from omics studies, the mechanisms 
of VHD remain complex. In vitro, computer-based, and animal 
experimental studies might not accurately reflect human 
physiology. For example, although lipoprotein(a) has been 
shown to have a causal effect on Mendelian randomisation,87 
deeper investigation of an observational cohort showed that 
lipoprotein(a) was only associated with the initiation of aortic 
valve calcification, not with its progression.88 In addition, 
although mouse models of aortic stenosis are used to mimic 
VHD, there are specific differences between mice and humans. 
For example, aortic stenosis rarely occurs in 
normocholesterolemic mice and only under conditions of very 
high hyperlipidaemia, a finding that is substantially different to 
the scenario in humans. Considering the complex mechanisms 
of VHD, the results of in vitro, ex vivo, or animal studies should 
ultimately be complemented with human studies.
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recellularised by the patient’s cells, enabling growth and 
remodelling according to the body’s needs. For example, 
decellularised homografts are being evaluated in 
prospective clinical trials for use as aortic and pulmonary 
valve replacements in young adults, showing excellent 
results at 5 years and 2·5 years follow-up, respectively.108,109 
Thus far, this strategy has only been used for homograft 
tissue because using decellularised and untreated 
xenograft valves led to early graft failure and high 
mortality.110

To avoid the need for donor valves, an alternative 
approach is to use decellularised de novo engineered 
tissue valves. These cell-grown valves produced in vitro 
are decellularised for storage and rapid availability. Such 
decellularised tissue-engineered valves show rapid 
repopulation with host cells when implanted in the 
pulmonary valve position in preclinical studies.111 
Computational modelling has been used to optimise the 
design of such valves, showing the remarkable 
predictability of long-term valve remodelling in vivo.102 In 
addition, these valves are compatible with transcatheter 
delivery.112 The somatic growth of decellularised tissue-
engineered valves has been shown in a recent preclinical 
study using lambs, thereby confirming one of the main 
goals of tissue-engineered heart valves.113

Another strategy to obtain a living valve replacement is to 
use resorbable synthetic valves. These valves comprise a 
resorbable synthetic valvular mesh that temporarily takes 

over valve function. In situ, the synthetic mesh is infiltrated 
by host immune and tissue cells, leading to the gradual 
immunological erosion and replacement of the mesh by 
endogenous new tissue. Preclinical proof-of-concept 
studies have shown the feasibility of these techniques when 
using supramolecular elastomeric meshes for pulmonary 
valve replacement by either surgical or transcatheter 
implantation.101 These synthetic valves are in clinical trials 
for right ventricular outflow tract reconstruction in 
paediatric patients with congenital malformations. Early 
outcomes from these trials showed that 17 of 18 patients 
(median age 5 years [range 2–12]) were free of reintervention 
at 1 year of implantation, with one patient requiring valve 
replacement due to the development of progressive stenosis 
of the proximal conduit anastomosis.114

Although preclinical results are encouraging, there are 
few studies that present long-term remodelling data, and 
variability in preclinical outcomes has been reported.100 
Given that the outcome of HVTE is heavily dependent on 
a patient’s regenerative capacity and immunological state, 
a personalised approach might be expected to be required 
for broad clinical applicability.99 To date, tissue-engineered 
valves have only been tested in situ in small patient 
cohorts, and the influence of patient characteristics (eg, 
sex and age) remains to be elucidated. The use of predictive 
computational modelling, integrated with experimental 
models and incorporating patient-specific features (ie, 
digital twins) at both the tissue level (eg, anatomy and 

Figure 4: In situ heart valve tissue engineering
Upon implantation, an acellular valvular implant induces an inflammatory response. When harnessed correctly, this inflammatory response triggers a phased tissue regenerative response initiated by 
the recruitment of endogenous cells, which colonise the porous valvular microstructure. In situ, the cells resorb or remodel the implanted graft material and lay down new endogenous tissue, 
generating an autologous living valve with the potential to grow and remodel. Schematic adapted from de Kort and colleagues99 by permission of the authors. Valve photographs reproduced from 
Uiterwijk and colleagues100 by permission of the authors; Kluin and colleagues,101  by permission of the authors; Emmert and colleagues,102  by permission of the American Association for the 
Advancement of Science; Boethig and colleagues103 by permission of the authors, and Goecke and colleagues,104 by permission of Elsevier.
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local haemodynamics) and cellular level (eg, 
immunological and metabolic states), might aid patient-
specific in situ HVTE. Effective collaboration between 
clinicians and engineers is indispensable to ensure that 
emerging technologies remain centred closely around 
patient needs and are broadly applicable and affordable.

Conclusions
In the future, the focus of VHD management will be likely 
to shift towards early detection and monitoring of disease 
progression through screening techniques. Digital 
medicine and artificial intelligence techniques applied to 
wearables, ECG, and miniaturised POCUS could enhance 
access to care and establish population-wide screening 
strategies. Artificial intelligence techniques and multiomic 
approaches could also help identify distinct patient 
phenotypes with varying severity, pathophysiological 
mechanisms, and therapeutic targets, thereby overcoming 
the challenges posed by the underlying biological 
heterogeneity of VHD progression. Ongoing 
pharmacotherapy clinical trials might lead to a new era in 
preventing VHD. The use of large databases and digital 
twin strategies for patients with established diseases 
could enable pre-emptive therapy planning. Furthermore, 
developing next-generation heart valves with repair, 
remodelling, and regenerative capabilities could 
revolutionise transcatheter and surgical strategies. Despite 
the barriers and challenges, these multidisciplinary 
approaches have the potential to substantially improve the 
morbidity and wellbeing of many patients worldwide and 
mitigate the growing burden of VHD.
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